High-Efficiency, Medium-Voltage Input, Solid-State, Transformer-Based 400-kW/1000-V/400-A Extreme Fast Charger for Electric Vehicles

DE-EE0008361

ELT241

Dr. Charles Zhu, Principal Investigator Delta Electronics (Americas) Ltd June, 2021

"This presentation does not contain any proprietary, confidential, or otherwise restricted information"

Project Overview

Budget

- Start December 1, 2018
- Finish November 30,2021
- 75% complete

Barriers

- System architecture and control for solid state transformer
- Medium-voltage isolation
- Power cell topology and control for high efficiency
- SiC semiconductor devices with high dv/dt and noise

- Total Budget: \$7.0 million
 - DOE Cost Share: \$3.5 million
 - o Recipients Cost Share: \$3.5 million
- 2021 Funding Planned: \$1.7 million

Team

Lead: Delta Electronics Americas Ltd **Partners:**

- General Motors
- DTE Energy
- CPES at Virginia Tech
- NextEnergy
- Michigan Energy Office
- City of Detroit

Relevance Project Objectives

- □ AREA OF INTEREST (AOI) 1: Extreme Fast Charging (XFC) Systems for Electric Vehicles
- □ Delta Electronics aims to achieve objectives by the end of program
 - To design and test a high-efficiency, medium-voltage-input, solid-state-transformer-based 400-kW Extreme Fast Charger (XFC) for electric vehicles, achieving better than 96.5 percent efficiency.
 - To demonstrate extreme fast charging with a retrofitted General Motors' light-duty battery electric vehicle at 3C or higher charging rate for at least 50 percent increase of SOC.
 - To achieve a 180-mile charge within 10 minutes.

Budget Period 2 Milestones

BP2: 12/1/2019 - 11/30/2020			
Planned Date	Mile- stone #	Milestone	Achievement
2/28/2020	M2.1	HVDS/RESS Build and Functional Test Complete	HVDS/RESS Build and Functional Test demonstrates compliance with specifications
5/31/2020	M2.2	3-Phase 135kW Charger Integration and Test Complete	3-Phase 135kW Charger Test demonstrates compliance with specifications
8/31/2020	M2.3	4.8kV 400kW XFC mechanical design complete	4.8kV/13.2kV 400kW XFC mechanical design complete for system prototype making
11/30/2020	M2.4	4.8kV 400kW XFC Lab Test Complete	4.8kV 400kW XFC Lab Test Results demonstrate compliance at partial power
11/30/2020	BP2	4.8kV 400kW XFC Build Complete	The 4.8kV 400kW XFC system build is complete and fully functional with at least 96% efficiency

Approaches

- ☐ Medium-voltage AC input, 4.8-kV and 13.2-kV
- ☐ Solid state transformer (SST)-based technology to reduce the size and weight, and to increase scalability and flexibility
- ☐ Cascaded multilevel converter topology as medium voltage interface to reduce the total number of power cell
- ☐ Multilevel resonant converter for medium voltage isolation, operated at high frequency with soft switching
- ☐ SiC MOSFET devices for high voltage and lower loss
- ☐ Interface to an Energy Storage System (ESS) and/or a renewable energy generation system (e.g. PV)

Conventional DC Fast Charger

Efficiency: $99\% \times 99.3\% \times 95\% = 93.4\%$ Footprint: $50 \text{ ft}^2 + 40 \text{ ft}^2 + 20 \text{ ft}^2 = 110 \text{ ft}^2$

TX Capacity
unused
Charging load
Year 1 Year 2 Year 3 Year 4

- installation site for Tesia Super Charger in
- Bulky and heavy
- Fixed voltage & power

- Space consuming
- Labor intensive

- Non expandable capacity
- High initial investment

Proposed Extreme Fast Charger

Efficiency: 97.5% × 99% = 96.5% Increased by 3%Footprint: 28 ft^2 + 10 ft^2 = 38 ft^2 Reduced by 50%

Conceptual SST based extreme fast charging station

Year 1 Year 2 Year 3 Year 4

- Modularized structure
- Scalable voltage/power

- Expandable capacity
- Lower initial cost

SST based XFC System Architecture

3-Φ MVAC input:

- •4.8kV/13.2kV
- •iTHD<5%, PF≥0.98
- •60Hz±10%

SST DC output:

- •1050V±3%
- •400kW power
- Interface for ESS/PV

Charger output:

- •200V~1000VDC
- 400A max current
- SAE J1772 charging interface CCS1

XFC Specification

Power Rating	400 kW	
Input AC Voltage	4.8 kV and 13.2 kV, 3-Phase, line-to-line	
AC Line Frequency	60 Hz	
HV Battery Voltage Range	200-1000 VDC	
Maximum Output Current	Continuous 400ADC, peak 500ADC	
Efficiency	Target 96.5% peak. Test result 97.5% peak.	
Charge Interface	J1772 CCS1	
Operational Ambient Temperature Range	-25 to 50°C	
Environmental Protection	NEMA 3R (outdoor)	
Additional Interface	HVDC interface (to ESS/renewable energy source)	

Technical Progress

Simplified Optimal Trajectory Control (SOTC) for Resonant Converter

- SOTC settles resonant tank to around the optimal point
- PI control eliminates the small steady-state error
- Applied into load transient, start-up and short circuit protection, and burst mode

Resonant Converter Start-up without SOTC

CLLC Start-up with SOTC

 i_{Lr} stresses < 1.4 x full load stress.

Transformer Insulation

Partial discharge (PD) test equivalent circuit

Partial discharge (PD) test source waveform

IEC60076-3 Requirement: partial discharge < 50pC @ 17.2kV

Litz wire jacketed in Teflon sleeve Blocks material penetration and air escape.

PD > 50pC @8.2kV

Fail the test

Litz wire wrapped in yarn Allows material penetration and air escape.

PD = 12pC @ 17.2kV

Pass the test!

13.2kV 400kW System Test Setup

Charge Dispenser User Interface

Test with battery emulator

- •Input 13.2kVac,
- •Output 200V-990V, up to 500A;
- •Full range up to 400kW

Charge test with Chevy Bolt. Up to 400V/100A, limited by the vehicle.

3-Phase SST Control Architecture

400kW XFC Total System Efficiency

400kW SST Efficiency

400kW Buck Converter Efficiency

SST Input Current TDD

13.2kV AC input

XFC Waveforms and Test Data

RESS Build

RESS: Rechargeable Energy Storage System (battery pack)

- 768 Volt cells to achieve >3C charge rate
- 192 series, 4 parallel string configuration for 800V charging

Completed Quad RESS

Auxilliary Power and Air Conditioning Compressor Front Propulsion DC Charge Inlet **DC Charge Contactors** RESS 1 **Battery** Solid RFSS 2 Disconnect State **Battery** Contactors **Switch** Disconnect Assembly Contactors Rear **Propulsion** ШШШШШ ШШШШ RESS 1 RESS 2

HVDS Build

HVDS: High Voltage Distribution System

Controls power flow among

- 4 battery packs
- 2 traction inverters
- DC fast charge connector
- HV accessories including auxiliary power and air conditioning compressor

High Voltage Junction Box

Full RESS Thermal Test

Functional test

- Discharge and charge
- Verify on board electronics
- Balance cells
- Use ABC170 to cycle dual-subpack at up to 250A
- Measure V, I, T from on-board sensors
- 15 minute profile based on simulation profile
- Coolant temperature: 25C

A NELTA

RESS Thermal Test Result

Final Test and Demo Site Planning

Final Test and Demo Site Planning

Site Plan

Test Setup Electric Diagram

DIE Energy

Collaboration and Coordination

Delta Electronics (Americas) Ltd. -Primary Recipient

- Administrative responsible to DOE, single point of contact.
- Technical direction and program management (timing, deliverables, budget).
- XFC prototypes development, testing, and system integration
- Commercialization.

General Motors

Provide a retrofit BEV capable of XFC at 800-V or higher at 3C charging

CPES at Virginia Tech

- Conduct advanced research of power stage topology for the XFC.
- Conduct advanced research of the system level control for both AC/DC and DC/DC stages.

DTE Energy

- Contribute the use of a test facility for XFC testing, vehicle charging test and demonstration.
- Consult on grid impact and operation safety, voltage specifications, standards conformance and certification.

NextEnergy

 Support XFC installation, integration, testing with battery emulator and EV, demonstration within its medium-voltage Microgrid Power Pavilion Platform.

Michigan Energy Office

Engage state-level public sector stakeholders supporting XFC deployment.

City of Detroit

 Strengthen coordination and fostering partnerships among business, neighborhood and municipal departments.

Future Works

Remainder of FY 2021

- Test site construction and equipment installation.
- Build and verify retrofit vehicle.
- Test 400kW XFC system with Chevy Bolt.
- Test 400kW XFC system with retrofit vehicle.
- Final operation demonstration.

Smarter. Greener. Together.

To learn more about Delta, please visit www.deltaww.com

or scan the QR code

English

Tradition al Chinese

Simplified Chinese

